PSO/CO



# PROGRAMME SPECIFIC OUTCOMES AND COURSE OUTCOMES OF BIOTECHNOLOGY ( UG & PG )

KALYAN P.G. COLLEGE, SECTOR-7, BHILAI

#### **VISION**

Our vision is to reach milestones in Biotechnology research and transform biotechnology into a leading precision tool for future development.

#### **MISSION**

The Department of Biotechnology was established in the year 2006 as one of the Departments under the Faculty of Science to impart quality education in the field of Biotechnology and to create trained Biotechnologists.

- Department of Biotechnology focuses on understanding humans as a biological and a cultural being, through cross-cultural perspective.
- The department of biotechnology has been teaching undergraduate, postgraduate, and research works that encompass various basic and applied aspects of modern biotechnology.
- The course contents of our department highly specialized and require very clear and fundamental inputs from basic and advanced biology, applied biology, and technology.
- The Department of Biotechnology has well developed facilities for Microbiology, Biochemistry, Molecular Biology, Plant Tissue culture and Bioinformatics. The Instruments available include PCR Thermal Cycler, ELISA Reader, Electrophoresis, UV Spectrophotometer, BOD Incubator and Microscope etc.
- The faculty of the department publishes research papers in national and international journals on regular basis.
- The main objective of the department is to provide academic training and research in the interdisciplinary areas of biotechnology with a particular emphasis on extending the knowledge generated from these studies towards the development of technologies.

## **GRADUATION - BIOTECHNOLOGY**

#### PROGRAMME SPECIFIC OBJECTIVES (PSO)

- ✓ **PSO1-** The Students will gain and apply knowledge of Biotechnology and Science concepts to solve problems related to field of Biotechnology.
- ✓ **PSO2** The Students will be able to identify, analyze and understand problems related to biotechnology and finding valid conclusions with basic knowledge in biotechnology.
- ✓ **PSO3** The Students Graduates will be able to design and develop solution to Biotechnology problems by applying appropriate tools while keeping in mind safety factor for environmental & society.
- ✓ **PSO4-** The Students will be able design, perform experiments, analyze and interpret data for investigating complex problems in biotechnology and related fields.
- ✓ **PSO5** The Students will be able to decide and apply appropriate tools and techniques in Biotechnology.
- ✓ **PSO6** The Students will be able to undertake any responsibility as an individual and as a team in a multidisciplinary environment.

#### **PROGRAMME OUTCOME**

- ✓ PO1- To create in-depth knowledge and ability to undertake further study and research in biotechnology
- ✓ **PO2-** To provide broad based training in technical skills in methods of biotechnology.
- ✓ PO3- To demonstrate knowledge and techniques fundamental to the practice of biotechnology.
- ✓ PO4- To make a knowledge and understanding of a range of concepts and issue in biotechnology.
- ✓ PO5- To understand basic biochemistry, immunology, cell and molecular biology and genetics and their associated laboratory techniques.
- ✓ PO6- To understand the theoretical nature of the science involved in medically related biotechnology research and practice.

#### **U.G. SYLLABUS**

#### **B.Sc. PART I, II, III**

| YEAR     | PAPER                                                 | MAXIMUM<br>MARKS | MINIMUM<br>MARKS |  |  |  |
|----------|-------------------------------------------------------|------------------|------------------|--|--|--|
|          | THE                                                   |                  |                  |  |  |  |
| B.Sc.I   | BIOCHEMISTRY, BIOSTATS & COMPUTERS                    | 50               | 17               |  |  |  |
|          | CELL BIOLOGY, GENETICS<br>AND MICROBIOLOGY            | 50               | 17               |  |  |  |
|          | MOLECULAR BIOLOGY<br>AND BIOPHYSICS                   | 50               | 17               |  |  |  |
| B.Sc.II  | RECOMBINANT DNA<br>TECHNOLOGY AND<br>GENOMIC          | 50               | 17               |  |  |  |
| B.Sc.III | PLANT, ENVIRONMENT<br>AND INDUSTRIAL<br>BIOTECHNOLOGY | 50               | 17               |  |  |  |
|          | IMMUNOLOGY, ANIMAL<br>AND MEDICAL<br>BIOTECHNOLOGY    | 50               | 17               |  |  |  |
|          | TOTAL                                                 | 1                | 00               |  |  |  |
|          | PRACTICAL FOR B.Sc. PART I , II, III                  |                  |                  |  |  |  |
| 1.       | PRACTICAL<br>(BASED ON PAPER I & II)                  | 50               | 17               |  |  |  |
|          | TOTAL                                                 | Á                | 50               |  |  |  |

# ADDITION OF THE MARKS OF INTERNAL EVALUATION IN THE ANNUAL EXAM RESULT AT U.G. LEVEL:-

As per decision of university co-ordination committee (25<sup>th</sup> meeting, proposal number 11) and the notification issued by Durg University, Durg on 25.10.2017, it is resolved that the marks obtained in the half-yearly examination will be added in the result of annual examination in such a way that the percentage of marks of internal evaluation will be 10% and the marks of the annual exam will be 90%. This decision will be effective for the B.Sc. annual examination in the forth coming sessions.

| PAPER                                                                                                                                                                                             | PAPER NAME<br>(PAPER CODE)              | OUTCOMES                                                                                                                                                                                                                                                                                                                                                |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| B.Sc. I                                                                                                                                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                         |  |  |
| PAPER I                                                                                                                                                                                           | BIOCHEMISTRY,<br>BIOSTAT &<br>COMPUTERS | CO –1 To get the knowledge of the structure of Carbohydrate, protein and Amino acid CO – 2. To get the knowledge of the Biochemistry, scope and development CO – 3To get the knowledge of the Lipids, Enzyme and Hormones CO-4 To understand the concept of biostatics their mean, median and mode  C0-5 To knowledge the salient features of computer  |  |  |
| CO – 1. To get the knowledg structure, organelles and fun CO – 2. Know the mendel la CELL BIOLOGY,  GENETICS AND Structural changes in chromo MICROBIOLOGY  CO – 4. Understand the prop mycoplasm |                                         | CO – 1. To get the knowledge of the basic concepts cell structure, organelles and functions CO – 2. Know the mendel law of inheritance CO – 3. To get the knowledge of the mutations and structural changes in chromosome CO – 4. Understand the properties of virues, bacteria and mycoplasm CO – 5. Know the concept of food microbiology and disease |  |  |
| LAB BIOCHEMICAL TECHNIQUES                                                                                                                                                                        |                                         | CO – 1. To get knowledge of the laboratory rules, tools, equipment in microbiological laboratory.  CO – 2. Understand the preparation of media for culture  CO – 3. Get the knowledge of methods of obtaining pure cultures  CO – 4 To know the biostatistics: By Manual and by computer.                                                               |  |  |

|                                                      | B.Sc. II                                            |                                                                                                                                                                                                                                                                                                                |  |  |
|------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PAPER I                                              | MOLECULAR<br>BIOLOGY &<br>BIOPHYSICS                | CO – 1. To get the knowledge of DNA, RNA and structure of gene.  CO – 2. To get the knowledge of genetic code and protein synthesis  CO – 3. Understand the Law of Thermodynamics and Beer Lambert's law  CO – 4. To know and concept of the gene therapy  CO – 5. Understand the principal of Biophysics      |  |  |
| PAPER II                                             | RECOMBINANT<br>DNA<br>TECHNOLOGY<br>AND<br>GENOMICS | CO - 1. To get the knowledge of the Recombinant DNA Technology  CO - 2. Understand the properties of Vectors  CO - 3. To Know the techniques of PCR  CO - 4. To get the knowledge of Bioinformatics  CO-5 To understand the concept of Targeted Gene Transfer and DNA fingerprinting                           |  |  |
| LAB COURSE  Molecular biology & biophysics Practical |                                                     | CO – 1. Understand the Laminar Air Flow, Autoclave, Hot Air Oven, Incubator, Water Bath, Quebec colony counter, Centrifuge, Spectrophotometer, Electrophoresis, Camera Lucida.  CO – 2. Determine the strength of Estimation of DNA from Plant Cells  CO – 3. To get the knowledge of isolation of DNA and RNA |  |  |

|               | B.Sc. III                                                          |                                                                                                        |  |  |
|---------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|
|               |                                                                    | CO – 1. Know the Plant cell and tissue culture : General introduction history, scope and application . |  |  |
| PAPER I       | PLANT,<br>ENVIRONMENT<br>AND INDUSTRIAL                            | CO – 2. To get the knowledge of Germplasm storage and Cryopreservation.                                |  |  |
| I / II ZIX I  | BIOTECHNOLOGY                                                      | CO – 3. To Know the scope of environmental biotechnology                                               |  |  |
|               |                                                                    | CO – 4. Understand the Bioreactors and its type. Fermentation                                          |  |  |
|               |                                                                    | CO – 5. To get the knowledge of concept of food technology                                             |  |  |
|               | IMMUNOLOGY,<br>ANIMAL AND<br>MEDICAL<br>BIOTECHNOLOGY              | CO – 1. Understand the Immune system concept                                                           |  |  |
|               |                                                                    | CO – 2. To get the knowledge of antigen-antibody interactions                                          |  |  |
| PAPER II      |                                                                    | CO- 3 To get the knowledge of understand the Animal tissue culture                                     |  |  |
|               |                                                                    | CO – 4 Understand the knowledge of invitro fertilization                                               |  |  |
|               |                                                                    | CO – 5. Understand the concept of transplantation                                                      |  |  |
|               |                                                                    | CO – 1. Plant tissue culture                                                                           |  |  |
| LAB<br>COURSE | PLANT, ENVIRONMENT, INDUSTRIAL AND MEDICAL BIOTECHNOLOGY PRACTICAL | CO – 2. Analysis of antigen- antibody interaction CO – 3. Determine the strength of DO, BOD and COD    |  |  |
|               |                                                                    |                                                                                                        |  |  |

#### **POST GRADUATION BIOTECHNOLOGY**

#### PROGRAMME SPECIFIC OBJECTIVES (PSO)

- ✓ **PSO1.** The student will be able to pursue higher education in India/abroad in Biotechnology and its related fields by taking up competitive exams like GATE, CSIR- NET, UGC –NET, DBT, ICMR, DST etc.
- ✓ **PSO2.** The student will be able to come up with solutions for any scientific or technical problems related to Biotechnological industries/institutes.
- ✓ **PSO3**. The student will be able to plan and conduct experiments in modern biotechnology and allied field laboratories including interpreting the significance of resulting data, reporting results and writing technical reports.
- ✓ **PSO4**. The student will be able to get familiarized with professional and economical issues in biotechnology and foster important job related skills such as communications and experience in working as a team that will help them to become good Entrepreneurs.
- ✓ **PSO5**. Exhibit skills of handling microbial processes, biochemical analysis by making use of state of the art instruments.
- ✓ **PSO6.** Exhibit strong, independent learning, analytical and problem solving skills with special emphasis on design, communication, and an ability to work in teams.
- ✓ **PSO7.** To have successful career as a researcher through lifelong learning in the field of biotechnology.

PSO/CO

#### **LEARNING OUTCOME**

- ✓ PO1- To produce responsible biotechnologists that can work with in the interdisciplinary frame work of biotechnology and related fields.
- ✓ PO2- Developing concepts and technical skills in methods of biotechnology.
- ✓ PO3- To empower students to think critically and solve problems in the field of biotechnology by applying research strategies .
- ✓ PO4- Student will be able to demonstrate the ability to communicate effectively with appropriate audiences with regards to field of biotechnology.
- ✓ **PO5-** To provide education that leads to comprehensive understanding of the principles and practices of biotechnology.
- ✓ **PO6-** To ability to develop, constructs and manage a research project in biotechnology.
- ✓ PO7- To analyze experimental results, differentiating between expected and unexpected results, trouble shooting, interpreting results and making conclusions.
- ✓ **PO8** To make our students competent in the field of biotechnology and its allied areas.

#### **SEMESTER ONE**

## **SCHEME OF SEMESTER I EXAMINATION**

| Sei | mester | Paper<br>code | Title of Theory/Practical papers   | Marks<br>Theory | Internal<br>Assessment<br>& Sessional |
|-----|--------|---------------|------------------------------------|-----------------|---------------------------------------|
|     |        | I             | Cell and Development Biology       | 80              | 20                                    |
|     |        | II            | Genetics                           | 80              | 20                                    |
|     | 0      |               | Microbial Physiology               | 00              | 00                                    |
|     | N      | Ш             | Biomolecules                       | 80              | 20                                    |
|     | _      | D.            | Based on theory paper I and II     | 80              | 20                                    |
|     | E      | IV            | Based on theory paper III and      |                 |                                       |
|     |        | Lab -One      | IV                                 | 80              |                                       |
|     |        | Lab – Two     | Paper I and II<br>Paper III and IV | 80              |                                       |
|     |        | Seminar       |                                    | 20<br>20        |                                       |

TOTAL MARKS – 600

At the end of this course, a student will have developed ability to:

| COURSE           | OUTCOMES                                                                                                           |  |
|------------------|--------------------------------------------------------------------------------------------------------------------|--|
|                  |                                                                                                                    |  |
| CELL AND         | CO-1. Get the knowledge of cell structure and organelles                                                           |  |
|                  | CO-2. To understand the cell cycle and apoptosis                                                                   |  |
| BIOLOGI          | CO-3. Study the biology of cancer.                                                                                 |  |
|                  | CO-4. Understand the structure and properties of development                                                       |  |
|                  | of germ lines                                                                                                      |  |
|                  | CO-1. To understand the nature of prokaryotic and eukaryotic                                                       |  |
|                  | gene                                                                                                               |  |
| CENETICS         | CO-2. Understand the regulation of gene expression in                                                              |  |
| GENETICS         | prokaryotic and eukaryotic                                                                                         |  |
|                  | CO-3. Study the mutation and change in chromosome number                                                           |  |
|                  | and structure.                                                                                                     |  |
|                  | CO-4. Get the knowledge of genetic disorder                                                                        |  |
|                  |                                                                                                                    |  |
| MICROBIAL        | CO-1. Understand the basic knowledge of microbial growth                                                           |  |
| PHYSIOLOGY       | CO-2. Understand the basic concepts of metabolic diversity                                                         |  |
|                  | CO-3. Study the basics of bacteria, virus                                                                          |  |
|                  | CO-4. Understand the microbial, food and water borne disease.                                                      |  |
|                  | CO-1. To gain insight into the basic principle of thermodynamics                                                   |  |
|                  | CO-2. To know about amino acid, protein, lipids and nucleic acid                                                   |  |
| BIOMOLECULES     | CO-3 To get the knowledge of carbohydrate metabolism                                                               |  |
|                  | CO-4. To understand the theories/principles of secondary                                                           |  |
|                  | metabolites                                                                                                        |  |
| BASED ON PAPER I |                                                                                                                    |  |
| AND II           | and Mendel law experiments                                                                                         |  |
| BASED ON PAPER   | ·                                                                                                                  |  |
| III AND IV       | Biomolecules and microbial activities                                                                              |  |
|                  | CELL AND DEVELOPMENT BIOLOGY  GENETICS  MICROBIAL PHYSIOLOGY  BIOMOLECULES  BASED ON PAPER I AND II BASED ON PAPER |  |

# SYLLABUS M.Sc.-2<sup>nd</sup> Semester

#### **SEMESTER TWO**

# SCHEME OF SEMESTER II EXAMINATION

| Sei | nester | Paper<br>code        | Title of Theory/Practical papers                                | Marks<br>Theory | Internal<br>assessment<br>and<br>Sessional |
|-----|--------|----------------------|-----------------------------------------------------------------|-----------------|--------------------------------------------|
|     |        | 1                    | Biostatistics and Computer Application in Biotechnology         | 80              | 20                                         |
|     | T      | П                    |                                                                 | 80              | 20                                         |
|     | W      | Ш                    | Molecular Biology Plant Biotechnology                           | 80              | 20                                         |
|     | 0      | IV                   | Macromolecules and Enzymology                                   | 80              | 20                                         |
|     |        | Lab -One             |                                                                 | 80              |                                            |
|     |        | Lab – Two<br>Seminar | Based on theory paper I and II Based on theory paper III and IV | 80              |                                            |
|     |        | Seminal              | Paper I and II Paper III and IV                                 | 20<br>20        |                                            |

TOTAL MARKS – 600

At the end of this course, a student will have developed ability to:

| PAPER       | PAPER NAME                   | COURSE OUTCOME                                                     |  |
|-------------|------------------------------|--------------------------------------------------------------------|--|
|             | BIOSTATISTICS                | CO-1. To understand the Measure of central tendency                |  |
|             | AND COMPUTER                 | CO-2. To understand how to interpret probability                   |  |
| PAPER I     | APPLICATION IN BIOTECHNOLOGY | CO-3. To understand knowledge of computer applications             |  |
|             |                              | CO-4. To study the data structures and database concepts           |  |
|             |                              | CO-1. To have a thorough idea about the basic concepts             |  |
|             |                              | DNA replication, damage and repair.                                |  |
|             | MOLECULAR                    | CO-2. To get an idea about the mechanism of transcription          |  |
| PAPER II    | BIOLOGY                      | and translation                                                    |  |
|             |                              | CO-3. To understand the mechanism of protein localization          |  |
|             |                              | CO-4. To acquire the knowledge of oncogene and tumor               |  |
|             |                              | suppressor gene.                                                   |  |
|             |                              | CO-1. To have basic knowledge of plant tissue culture,             |  |
|             | PLANT                        | embro culture, anther, pollen and ovary.                           |  |
| PAPER III   | BIOTECHNOLOGY                | CO-2. To illustrate the concepts in germplasm conservation         |  |
| TAI LIK III |                              | and cryopreservation                                               |  |
|             |                              | CO-3. To explain and derive metabolic engineering and              |  |
|             |                              | industrial products.                                               |  |
|             |                              | CO-1 To get the knowledge of supermoleculer assembly.              |  |
|             | MACROMOLECULE                | CO-2. To gain detailed insight into protein-protein                |  |
| PAPER       | S AND                        | interactions                                                       |  |
| IV          | ENZYMOLOGY                   | <b>CO-3.</b> To acquaint with the principle and kinetics of enzyme |  |
|             |                              | CO-4. To get to know in detail about the ribozyme and              |  |
|             |                              | nucleic acid hybridation.                                          |  |
| LAB         | BASED ON PAPER I             | Understand the computer programmes, linear regression,             |  |
| COURSE      | AND II                       | MS office, Excel and biostatics analyses as well as extraction     |  |
| III         | AIVE                         | and estimation of DNA                                              |  |
| LAB         | BASED ON PAPER III           | Understand the plant tissue culture techniques and                 |  |
| COURSE      | AND IV                       | determination of alkaline protease, catalase and urease activity   |  |
| IV          |                              |                                                                    |  |

KALYAN P.G. COLLEGE, SECTOR-7, BHILAI

#### **SEMESTER THREE**

#### SCHEME OF SEMESTER III EXAMINATION

| Sei | mester      | Paper<br>code          | Title of Theory/Practical papers                                                              | Marks<br>Theory | Internal<br>Assessment<br>and<br>Sessional |
|-----|-------------|------------------------|-----------------------------------------------------------------------------------------------|-----------------|--------------------------------------------|
|     | T<br>H<br>R | IIIIIV                 | Genetic Engineering Biology of Immune System Bioprocess Engineering and Technology            | 80<br>80<br>80  | 20<br>20<br>20<br>20                       |
|     | E           | Lab - One<br>Lab – Two | Environmental Biotechnology  Based on theory paper I and II  Based on theory paper III and IV | 80<br>80        | 20                                         |
|     |             | Seminar                | Paper I and II<br>Paper III and IV                                                            | 20<br>20        |                                            |

TOTAL MARKS - 600

At the end of this course, a student will have developed ability to:

| PAPER               | PAPER NAME                   | COURSE OUTCOME                                                                                      |  |
|---------------------|------------------------------|-----------------------------------------------------------------------------------------------------|--|
|                     | GENETIC                      | CO-1. Explain scope of genetic engineering and recombinant DNA technology                           |  |
| PAPER I             | ENGINEERING                  | CO-2. Explain basic and working principle genetic cloning vectors                                   |  |
|                     |                              | CO-3. Explain mechanism of protein engineering and processing of recombinant protein                |  |
|                     |                              | CO-1. The basic properties of immune system .                                                       |  |
| PAPER II            | BIOLOGY OF IMMUNE SYSTEM     | CO-2. Mechanisms of antigen-antibody interactions                                                   |  |
|                     |                              | CO-3. Biotechnological applications of hybridoma technology                                         |  |
|                     | BIOPROCESS                   | CO-1. Gives an introduction to bioprocess engineering                                               |  |
| D4.050              | ENGINEERING                  | CO-2.Explain types and properties of bioreactor                                                     |  |
| PAPER               | AND<br>TECHNOLOGY            | CO-3.Explain the mechanism of downstream processing                                                 |  |
| III                 | TECHNOLOGY                   | CO-4.Explain the industrial productions of alcohol, acid,                                           |  |
|                     |                              | antibiotics and food technology                                                                     |  |
|                     |                              | CO-1.Explain the fundamentals of environmental pollution and treatment through biotechnology        |  |
| PAPER<br>IV         | ENVIRONMENTAL BIOTECHNOLOGY  | CO-2.Express the role of GMO , Biodegradation, waste water treatment.                               |  |
|                     |                              | CO-3. Understand the concept of biopesticides, IPR and solid Wastes                                 |  |
| LAB<br>COURSE<br>V  | BASED ON PAPER I<br>AND II   | Understand the process of DNA isolation and extraction , Blood test, ELISA test and Immunodiffusion |  |
| LAB<br>COURSE<br>VI | BASED ON PAPER III<br>AND IV | To get the knowledge of bacterial and fungal growth curve, TDS, BOD, DO and COD, and MPN            |  |

KALYAN P.G. COLLEGE, SECTOR-7, BHILAI

#### SCHEME OF SEMESTER IV EXAMINATION

| Ser | nester | Paper<br>code | Title of Theory/Practical papers           | Marks<br>Theory | Internal<br>assessment<br>and<br>Sessional |
|-----|--------|---------------|--------------------------------------------|-----------------|--------------------------------------------|
|     |        | I             | Basic Concepts of Bioinformatics and Nano- | 80              | 20                                         |
|     | F      |               | biotechnology                              | 80              | 20                                         |
|     | O<br>U | II            | Advance techniques in Biotechnology        | 80              | 20                                         |
|     |        | III           | Animal Biotechnology                       | 80              | 20                                         |
|     | R      |               |                                            |                 |                                            |
|     | T<br>H | IV            | Functional Genomics and Proteomics         |                 |                                            |
|     |        | Lab -One      | Based on theory paper I and II             | 80              |                                            |
|     |        | Lab – Two     | Based on theory paper III and IV           | 80              |                                            |
|     |        | Seminar       | Paper I and II<br>Paper III and IV         | 20<br>20        |                                            |

TOTAL MARKS – 600

At the end of this course, a student will have developed ability to:

| PAPER    | PAPER NAME                  | COURSE OUTCOME                                                          |  |
|----------|-----------------------------|-------------------------------------------------------------------------|--|
|          | BASIC CONCEPTS              | <b>CO-1.</b> To understand the knowledge of basic of bioinformatics :   |  |
|          | OF                          | scope and application                                                   |  |
| PAPER I  | BIOINFORMATICS<br>AND NANO- | CO-2. Explain the process and use of Bioinformatics software            |  |
|          | BIOTECHNOLOGY               | tools                                                                   |  |
|          |                             | CO-3. Classify basic principles of Nano-biotechnology                   |  |
|          |                             | CO-1. Knowledge of principle of spectrophotometer,                      |  |
|          | ADVANCE<br>TECHNIQUES IN    | electrophoresis and chromatographic.                                    |  |
| PAPER II | BIOTECHNOLOGY               | CO-2. Study of PCR, Blotting and DNA sequencer                          |  |
|          |                             | CO-3. To know about the basics of Microscope, RIA and ELISA             |  |
|          | ANIMAL                      | CO-1. Identify and define various types of cell line culture            |  |
| PAPER    | BIOTECHNOLOGY               | <b>CO-2.</b> State and compare the differences Primary, Secondary       |  |
| III      |                             | and Established cell line                                               |  |
|          |                             | CO-3. Understand and explain the concept of tissue                      |  |
|          |                             | engineering and Transgenic Animal                                       |  |
|          |                             | <b>CO-1.</b> Appreciate concepts and methods from protein chips         |  |
|          |                             | and protein –protein interaction                                        |  |
| PAPER    | FUNCTIONAL GENOMICS AND     | <b>CO-2.</b> Explain the ethical, cross-cultural and historical context |  |
| IV       | PROTEOMICS                  | of environmental issues.                                                |  |
|          |                             | <b>CO-3.</b> Discuss the concept of proteomics and genomics             |  |
|          |                             | <b>CO-4.</b> To understand the structure and functions of genomics      |  |
|          |                             | and proteomics                                                          |  |
| LAB      |                             | 1.To study the sequence alignment BLAST, CLUSTAL W                      |  |
| COURSE   | BASED ON PAPER I            | 2. Understand the process of spectrophotometer                          |  |
| VII      | AND II                      | determination, and chromatographic, separation of DNA and               |  |
| •        |                             | Protein by Electrophoresis                                              |  |
| LAB      |                             | 1. Understand whole gemone databases, SWISS- PORT, VAST                 |  |
| COURSE   | BASED ON PAPER III          | and Gene bank databases .                                               |  |
| VIII     | AND IV                      | 2.Extraction and estimation of DNA from Blood, Spleen and               |  |
| VIII     |                             | Muscle tissue                                                           |  |



PRINCIPAL
Kalyan Post Graduate College